
Nightshade: Near Protocol Sharding Design

Alex Skidanov
7/AlexSkidanov

alex@nearprotocol.com

Illia Polosukhin
7/ilblackdragon

illia@nearprotocol.com

July 2019

Contents

1 Sharding Basics 3
1.1 Validator partitioning and Beacon chains 4
1.2 Quadratic sharding . 5
1.3 State sharding . 5
1.4 Cross-shard transactions . 6
1.5 Malicious behavior . 8

1.5.1 Malicious forks . 8
1.5.2 Approving invalid blocks 9

2 State Validity and Data Availability 10
2.1 Validators rotation . 11
2.2 State Validity . 12
2.3 Fisherman . 15
2.4 Succinct Non-interactive Arguments of Knowledge 16
2.5 Data Availability . 16

2.5.1 Proofs of Custody . 18
2.5.2 Erasure Codes . 18
2.5.3 Polkadot’s approach to data availability 20
2.5.4 Long term data availability 20

3 Nightshade 21
3.1 From shard chains to shard chunks 21
3.2 Consensus . 22
3.3 Block production . 23
3.4 Ensuring data availability . 24

3.4.1 Dealing with lazy block producers 25
3.5 State transition application . 25
3.6 Cross-shard transactions and receipts 26

3.6.1 Receipt transaction lifetime 26
3.6.2 Handling too many receipts 27

1

3.7 Chunks validation . 28
3.7.1 State validity challenge 30
3.7.2 Fishermen and fast cross-shard transactions 31
3.7.3 Hiding validators . 31
3.7.4 Commit-Reveal . 34
3.7.5 Handling challenges . 35

3.8 Signature Aggregation . 35
3.9 Snapshots Chain . 37

4 Conclusion 38

2

Introduction

It is well-known that Ethereum, the most used general purpose blockchain at
the time of this writing, can only process less than 20 transactions per second
on the main chain. This limitation, coupled with the popularity of the network,
leads to high gas prices (the cost of executing a transaction on the network)
and long confirmation times; despite the fact that at the time of this writing a
new block is produced approximately every 10–20 seconds the average time it
actually takes for a transaction to be added to the blockchain is 1.2 minutes,
according to ETH Gas Station. Low throughput, high prices, and high latency
all make Ethereum not suitable to run services that need to scale with adoption.

The main reason for Ethereum low throughput is that every node in the
network needs to process every single transaction. Developers have proposed
many solutions to address the issue of throughput on the protocol level. These
solutions can be mostly separated into those that delegate all the computation to
a small set of powerful nodes, and those that have each node in the network only
do a subset of the total amount of work. An example of the former approach is
Solana that through careful low level optimizations and GPU usage can reach
hundreds of thousand simple payment transactions per second processed by
each node in the system. Algorand, SpaceMesh, Thunder all fit into the former
category, building various improvements in the consensus and the structure of
the blockchain itself to run more transactions than Ethereum, but still bounded
by what a single (albeit very powerful) machine can process.

The latter approach, in which the work is split among all the participating
nodes, is called sharding. This is how Ethereum Foundation currently plans to
scale Ethereum. At the time of this writing the spec is not finalized yet, the most
recent spec can be found here: https://github.com/ethereum/eth2.0-specs.

Near Protocol is also built on sharding. The Near team, which includes
several ex-MemSQL engineers responsible for building sharding, cross-shard
transactions and distributed JOINs, as well as five ex-Googlers, has significant
industry expertise in building distributed systems.

This document outlines the general approach to blockchain sharding, the
major problems that need to be overcome, including state validity and data
availability problems, and presents Nightshade, the solution Near Protocol is
built upon that addresses those issues.

1 Sharding Basics1

Let’s start with the simplest approach to sharding. In this approach instead of
running one blockchain, we will run multiple, and call each such blockchain a
“shard”. Each shard will have its own set of validators. Here and below we use
a generic term “validator” to refer to participants that verify transactions and
produce blocks, either by mining, such as in Proof of Work, or via a voting-based

1This section was previously published at https://near.ai/shard1. If you read it before,
skip to the next section.

3

https://solana.com
https://algorand.com
https://spacemesh.io
https://thundercore.com
https://github.com/ethereum/eth2.0-specs
https://near.ai/shard1

mechanism. For now let’s assume that the shards never communicate with each
other.

This design, though simple, is sufficient to outline some initial major chal-
lenges in sharding.

1.1 Validator partitioning and Beacon chains

Say that the system comprises 10 shards. The first challenge is that with each
shard having its own validators, each shard is now 10 times less secure than the
entire chain. So if a non-sharded chain with X validators decides to hard-fork
into a sharded chain, and splits X validators across 10 shards, each shard now
only has X/10 validators, and corrupting one shard only requires corrupting
5.1% (51% / 10) of the total number of validators (see figure 1),

Figure 1: Splitting the validators across shards

which brings us to the second point: who chooses validators for each shard?
Controlling 5.1% of validators is only damaging if all those 5.1% of validators
are in the same shard. If validators can’t choose which shard they get to validate
in, a participant controlling 5.1% of the validators is highly unlikely to get all
their validators in the same shard, heavily reducing their ability to compromise
the system.

Almost all sharding designs today rely on some source of randomness to
assign validators to shards. Randomness on blockchain on itself is a very chal-
lenging topic and is out of scope for this document. For now let’s assume there’s
some source of randomness we can use. We will cover validators assignment in
more detail in section 2.1.

Both randomness and validator assignment require computation that is not
specific to any particular shard. For that computation, practically all existing
designs have a separate blockchain that is tasked with performing operations
necessary for the maintenance of the entire network. Besides generating random

4

numbers and assigning validators to the shards, these operations often also
include receiving updates from shards and taking snapshots of them, processing
stakes and slashing in Proof-of-Stake systems, and rebalancing shards when that
feature is supported. Such chain is called a Beacon chain in Ethereum, a Relay
chain in PolkaDot, and the Cosmos Hub in Cosmos.

Throughout this document we will refer to such chain as a Beacon chain.
The existence of the Beacon chain brings us to the next interesting topic, the
quadratic sharding.

1.2 Quadratic sharding

Sharding is often advertised as a solution that scales infinitely with the number
of nodes participating in the network operation. While it is in theory possible to
design such a sharding solution, any solution that has the concept of a Beacon
chain doesn’t have infinite scalability. To understand why, note that the Beacon
chain has to do some bookkeeping computation, such as assigning validators to
shards, or snapshotting shard chain blocks, that is proportional to the number
of shards in the system. Since the Beacon chain is itself a single blockchain, with
computation bounded by the computational capabilities of nodes operating it,
the number of shards is naturally limited.

However, the structure of a sharded network does bestow a multiplicative
effect on any improvements to its nodes. Consider the case in which an arbitrary
improvement is made to the efficiency of nodes in the network which will allow
them faster transaction processing times.

If the nodes operating the network, including the nodes in the Beacon chain,
become four times faster, then each shard will be able to process four times more
transactions, and the Beacon chain will be able to maintain 4 times more shards.
The throughput across the system will increase by the factor of 4 × 4 = 16 —
thus the name quadratic sharding.

It is hard to provide an accurate measurement for how many shards are
viable today, but it is unlikely that in any foreseeable future the throughput
needs of blockchain users will outgrow the limitations of quadratic sharding.
The sheer number of nodes necessary to operate such a volume of shards securely
is likely orders of magnitude higher than the number of nodes operating all the
blockchains combined today.

1.3 State sharding

Up until now we haven’t defined very well what exactly is and is not separated
when a network is divided into shards. Specifically, nodes in the blockchain
perform three important tasks: not only do they 1) process transactions, they
also 2) relay validated transactions and completed blocks to other nodes and 3)
store the state and the history of the entire network ledger. Each of these three
tasks imposes a growing requirement on the nodes operating the network:

5

1. The necessity to process transactions requires more compute power with
the increased number of transactions being processed;

2. The necessity to relay transactions and blocks requires more network band-
width with the increased number of transactions being relayed;

3. The necessity to store data requires more storage as the state grows. Im-
portantly, unlike the processing power and network, the storage require-
ment grows even if the transaction rate (number of transactions processed
per second) remains constant.

From the above list it might appear that the storage requirement would be
the most pressing, since it is the only one that is being increased over time
even if the number of transactions per second doesn’t change, but in practice
the most pressing requirement today is the compute power. The entire state of
Ethereum as of this writing is 100GB, easily manageable by most of the nodes.
But the number of transactions Ethereum can process is around 20, orders of
magnitude less than what is needed for many practical use cases.

Zilliqa is the most well-known project that shards processing but not storage.
Sharding of processing is an easier problem because each node has the entire
state, meaning that contracts can freely invoke other contracts and read any data
from the blockchain. Some careful engineering is needed to make sure updates
from multiple shards updating the same parts of the state do not conflict. In
those regards Zilliqa is taking a relatively simplistic approach2.

While sharding of storage without sharding of processing was proposed, it is
extremely uncommon. Thus in practice sharding of storage, or State Sharding,
almost always implies sharding of processing and sharding of network.

Practically, under State Sharding the nodes in each shard are building their
own blockchain that contains transactions that affect only the local part of the
global state that is assigned to that shard. Therefore, the validators in the
shard only need to store their local part of the global state and only execute,
and as such only relay, transactions that affect their part of the state. This
partition linearly reduces the requirement on all compute power, storage, and
network bandwidth, but introduces new problems, such as data availability and
cross-shard transactions, both of which we will cover below.

1.4 Cross-shard transactions

The sharding model we described so far is not a very useful, because if individual
shards cannot communicate with each other, they are no better than multiple
independent blockchains. Even today, when sharding is not available, there’s a
huge demand for interoperability between various blockchains.

Let’s for now only consider simple payment transactions, where each partic-
ipant has account on exactly one shard. If one wishes to transfer money from

2Our analysis of their approach can be found here: https://medium.com/nearprotocol/

8f9efae0ce3b

6

https://zilliqa.com
https://medium.com/nearprotocol/8f9efae0ce3b
https://medium.com/nearprotocol/8f9efae0ce3b

one account to another within the same shard, the transaction can be processed
entirely by the validators in that shard. If, however, Alice that resides on shard
#1 wants to send money to Bob who resides on shard #2, neither validators
on shard #1(they won’t be able to credit Bob’s account) nor the validators on
shard #2 (they won’t be able to debit Alice’s account) can process the entire
transaction.

There are two families of approaches to cross-shard transactions:

• Synchronous: whenever a cross-shard transaction needs to be executed,
the blocks in multiple shards that contain state transition related to the
transaction get all produced at the same time, and the validators of mul-
tiple shards collaborate on executing such transactions.3

• Asynchronous: a cross-shard transaction that affects multiple shards
is executed in those shards asynchronously, the “Credit” shard executing
its half once it has sufficient evidence that the “Debit” shard has exe-
cuted its portion. This approach tends to be more prevalent due to its
simplicity and ease of coordination. This system is today proposed in Cos-
mos, Ethereum Serenity, Near, Kadena, and others. A problem with this
approach lies in that if blocks are produced independently, there’s a non-
zero chance that one of the multiple blocks will be orphaned, thus making
the transaction only partially applied. Consider figure 2 that depicts two
shards both of which encountered a fork, and a cross-shard transaction
that was recorded in blocks A and X’ correspondingly. If the chains A-B
and V’-X’-Y’-Z’ end up being canonical in the corresponding shards, the
transaction is fully finalized. If A’-B’-C’-D’ and V-X become canonical,
then the transaction is fully abandoned, which is acceptable. But if, for
example, A-B and V-X become canonical, then one part of the transac-
tion is finalized and one is abandoned, creating an atomicity failure. We
will cover how this problem is addressed in proposed protocols in the sec-
ond part, when covering changes to the fork-choice rules and consensus
algorithms proposed for sharded protocols.

Note that communication between chains is useful outside of sharded blockchains
too. Interoperability between chains is a complex problem that many projects
are trying to solve. In sharded blockchains the problem is somewhat easier since
the block structure and consensus are the same across shards, and there’s a bea-
con chain that can be used for coordination. In a sharded blockchain, however,
all the shard chains are the same, while in the global blockchains ecosystem there
are lots of different blockchains, with different target use cases, decentralization
and privacy guarantees.

Building a system in which a set of chains have different properties but
use sufficiently similar consensus and block structure and have a common bea-
con chain could enable an ecosystem of heterogeneous blockchains that have a

3The most detailed proposal known to the authors of this doc-
ument is Merge Blocks, described here: https://ethresear.ch/t/

merge-blocks-and-synchronous-cross-shard-state-execution/1240

7

https://ethresear.ch/t/merge-blocks-and-synchronous-cross-shard-state-execution/1240
https://ethresear.ch/t/merge-blocks-and-synchronous-cross-shard-state-execution/1240

Figure 2: Asynchronous cross-shard transactions

working interoperability subsystem. Such system is unlikely to feature valida-
tor rotation, so some extra measures need to be taken to ensure security. Both
Cosmos and PolkaDot are effectively such systems4

1.5 Malicious behavior

In this section we will review what adversarial behavior can malicious validators
exercise if they manage to corrupt a shard. We will review classic approaches
to avoiding corrupting shards in section 2.1.

1.5.1 Malicious forks

A set of malicious validators might attempt to create a fork. Note that it doesn’t
matter if the underlying consensus is BFT or not, corrupting sufficient number
of validators will always make it possible to create a fork.

It is significantly more likely for more that 50% of a single shard to be cor-
rupted, than for more than 50% of the entire network to be corrupted (we will
dive deeper into these probabilities in section 2.1). As discussed in section 1.4,
cross-shard transactions involve certain state changes in multiple shards, and
the corresponding blocks in such shards that apply such state changes must
either be all finalized (i.e. appear in the selected chains on their corresponding
shards), or all be orphaned (i.e. not appear in the selected chains on their cor-
responding shards). Since generally the probability of shards being corrupted

4Refer to this writeup by Zaki Manian from Cosmos: https://forum.cosmos.network/

t/polkadot-vs-cosmos/1397/2 and this tweet-storm by the first author of this document:
https://twitter.com/AlexSkidanov/status/1129511266660126720 for a detailed comparison
of the two

8

https://cosmos.network
https://polkadot.network
https://forum.cosmos.network/t/polkadot-vs-cosmos/1397/2
https://forum.cosmos.network/t/polkadot-vs-cosmos/1397/2
https://twitter.com/AlexSkidanov/status/1129511266660126720

is not negligible, we can’t assume that the forks won’t happen even if a byzan-
tine consensus was reached among the shard validators, or many blocks were
produced on top of the block with the state change.

This problem has multiple solutions, the most common one being occasional
cross-linking of the latest shard chain block to the beacon chain. The fork
choice rule in the shard chains is then changed to always prefer the chain that is
cross-linked, and only apply shard-specific fork-choice rule for blocks that were
published since the last cross-link.

1.5.2 Approving invalid blocks

A set of validators might attempt to create a block that applies the state tran-
sition function incorrectly. For example, starting with a state in which Alice
has 10 tokens and Bob has 0 tokens, the block might contain a transaction that
sends 10 tokens from Alice to Bob, but ends up with a state in which Alice has
0 tokens and Bob has 1000 tokens, as shown on figure 3.

Figure 3: An example of an invalid block

In a classic non-sharded blockchain such an attack is not possible, since all
the participant in the network validate all the blocks, and the block with such
an invalid state transition will be rejected by both other block producers, and
the participants of the network that do not create blocks. Even if the malicious
validators continue creating blocks on top of such an invalid block faster than
honest validators build the correct chain, thus having the chain with the invalid
block being longer, it doesn’t matter, since every participant that is using the
blockchain for any purpose validates all the blocks, and discards all the blocks
built on top of the invalid block.

On the figure 4 there are five validators, three of whom are malicious. They
created an invalid block A’, and then continued building new blocks on top
of it. Two honest validators discarded A’ as invalid and were building on top

9

Figure 4: Attempt to create an invalid block in a non-sharded blockchain

of the last valid block known to them, creating a fork. Since there are fewer
validators in the honest fork, their chain is shorter. However, in classic non-
sharded blockchain every participant that uses blockchain for any purpose is
responsible for validating all the blocks they receive and recomputing the state.
Thus any person who has any interest in the blockchain would observe that A’
is invalid, and thus also immediately discard B’, C’ and D’, as such taking the
chain A-B as the current longest valid chain.

In a sharded blockchain, however, no participant can validate all the trans-
actions on all the shards, so they need to have some way to confirm that at no
point in history of any shard of the blockchain no invalid block was included.

Note that unlike with forks, cross-linking to the Beacon chain is not a suffi-
cient solution, since the Beacon chain doesn’t have the capacity to validate the
blocks. It can only validate that a sufficient number of validators in that shard
signed the block (and as such attested to its correctness).

We will discuss solutions to this problem in section 2.2 below.

2 State Validity and Data Availability5

The core idea in sharded blockchains is that most participants operating or
using the network cannot validate blocks in all the shards. As such, whenever
any participant needs to interact with a particular shard they generally cannot
download and validate the entire history of the shard.

The partitioning aspect of sharding, however, raises a significant potential
problem: without downloading and validating the entire history of a particular
shard the participant cannot necessarily be certain that the state with which

5This section, except for subsection 2.5.3, was previously published at https://near.ai/

shard2. If you read it before, skip to the next section.

10

https://near.ai/shard2
https://near.ai/shard2

they interact is the result of some valid sequence of blocks and that such sequence
of blocks is indeed the canonical chain in the shard. A problem that doesn’t
exist in a non-sharded blockchain.

We will first present a simple solution to this problem that has been proposed
by many protocols and then analyze how this solution can break and what
attempts have been made to address it.

2.1 Validators rotation

The naive solution to state validity is shown on figure 5: let’s say we assume
that the entire system has on the order of thousands validators, out of which
no more than 20% are malicious or will otherwise fail (such as by failing to be
online to produce a block). Then if we sample 200 validators, the probability
of more than 1

3 failing for practical purposes can be assumed to be zero.

Figure 5: Sampling validators

1
3 is an important threshold. There’s a family of consensus protocols, called

BFT consensus protocols, that guarantees that for as long as fewer than 1
3 of

participants fail, either by crashing or by acting in some way that violates the
protocol, the consensus will be reached.

With this assumption of honest validator percentage, if the current set of
validators in a shard provides us with some block, the naive solution assumes
that the block is valid and that it is built on what the validators believed to be
the canonical chain for that shard when they started validating. The validators
learned the canonical chain from the previous set of validators, who by the same
assumption built on top of the block which was the head of the canonical chain
before that. By induction the entire chain is valid, and since no set of validators
at any point produced forks, the naive solution is also certain that the current
chain is the only chain in the shard. See figure 6 for a visualization.

11

Figure 6: A blockchain with each block finalized via BFT consensus

This simple solution doesn’t work if we assume that the validators can be
corrupted adaptively, which is not an unreasonable assumption6. Adaptively
corrupting a single shard in a system with 1000 shards is significantly cheaper
than corrupting the entire system. Therefore, the security of the protocol de-
creases linearly with the number of shards. To have certainty in the validity of
a block, we must know that at any point in history no shard in the system has
a majority of validators colluding; with adaptive adversaries, we no longer have
such certainty. As we discussed in section 1.5, colluding validators can exercise
two basic malicious behaviors: create forks, and produce invalid blocks.

Malicious forks can be addressed by blocks being cross-linked to the Bea-
con chain that is generally designed to have significantly higher security than
the shard chains. Producing invalid blocks, however, is a significantly more
challenging problem to tackle.

2.2 State Validity

Consider figure 7 on which Shard #1 is corrupted and a malicious actor produces
invalid block B. Suppose in this block B 1000 tokens were minted out of thin
air on Alice’s account. The malicious actor then produces valid block C (in a
sense that the transactions in C are applied correctly) on top of B, obfuscating
the invalid block B, and initiates a cross-shard transaction to Shard #2 that
transfers those 1000 tokens to Bob’s account. From this moment the improperly
created tokens reside on an otherwise completely valid blockchain in Shard #2.

Some simple approaches to tackle this problem are:

6Read this article for details on how adaptive corruption can be carried
out: https://medium.com/nearprotocol/d859adb464c8. For more details on adap-
tive corruption, read https://github.com/ethereum/wiki/wiki/Sharding-FAQ#

what-are-the-security-models-that-we-are-operating-under

12

https://medium.com/nearprotocol/d859adb464c8
https://github.com/ethereum/wiki/wiki/Sharding-FAQ#what-are-the-security-models-that-we-are-operating-under
https://github.com/ethereum/wiki/wiki/Sharding-FAQ#what-are-the-security-models-that-we-are-operating-under

Figure 7: A cross-shard transaction from a chain that has an invalid block

1. For validators of Shard #2 to validate the block from which the transaction
is initiated. This won’t work even in the example above, since block C
appears to be completely valid.

2. For validators in Shard #2 to validate some large number of blocks pre-
ceding the block from which the transaction is initiated. Naturally, for
any number of blocks N validated by the receiving shard the malicious
validators can create N+1 valid blocks on top of the invalid block they
produced.

A promising idea to resolve this issue would be to arrange shards into an
undirected graph in which each shard is connected to several other shards, and
only allow cross-shard transactions between neighboring shards (e.g. this is how
Vlad Zamfir’s sharding essentially works7, and similar idea is used in Kadena’s
Chainweb [1]). If a cross-shard transaction is needed between shards that are
not neighbors, such transaction is routed through multiple shards. In this design
a validator in each shard is expected to validate both all the blocks in their shard
as well as all the blocks in all the neighboring shards. Consider a figure below
with 10 shards, each having four neighbors, and no two shards requiring more
than two hops for a cross-shard communication shown on figure 8.

Shard #2 is not only validating its own blockchain, but also blockchains of
all the neighbors, including Shard #1. So if a malicious actor on Shard #1
is attempting to create an invalid block B, then build block C on top of it
and initiate a cross-shard transaction, such cross-shard transaction will not go
through since Shard #2 will have validated the entire history of Shard #1 which
will cause it to identify invalid block B.

7Read more about the design here: https://medium.com/nearprotocol/37e538177ed9

13

https://medium.com/nearprotocol/37e538177ed9

Figure 8: An invalid cross-shard transaction in chainweb-like system that will
get detected

While corrupting a single shard is no longer a viable attack, corrupting a
few shards remains a problem. On figure 9 an adversary corrupting both Shard
#1 and Shard #2 successfully executes a cross-shard transaction to Shard #3
with funds from an invalid block B:

Figure 9: An invalid cross-shard transaction in chainweb-like system that will
not get detected

Shard #3 validates all the blocks in Shard #2, but not in Shard #1, and
has no way to detect the malicious block.

There are two major directions of properly solving state validity: fishermen

14

and cryptographic proofs of computation.

2.3 Fisherman

The idea behind the first approach is the following: whenever a block header
is communicated between chains for any purpose (such as cross-linking to the
beacon chain, or a cross-shard transaction), there’s a period of time during
which any honest validator can provide a proof that the block is invalid. There
are various constructions that enable very succinct proofs that the blocks are
invalid, so the communication overhead for the receiving nodes is way smaller
than that of receiving a full block.

With this approach for as long as there’s at least one honest validator in the
shard, the system is secure.

Figure 10: Fisherman

This is the dominant approach (besides pretending the problem doesn’t ex-
ist) among the proposed protocols today. This approach, however, has two
major disadvantages:

1. The challenge period needs to be sufficiently long for the honest validator
to recognize a block was produced, download it, fully verify it, and prepare
the challenge if the block is invalid. Introducing such a period would
significantly slow down the cross-shard transactions.

2. The existence of the challenge protocol creates a new vector of attacks
when malicious nodes spam with invalid challenges. An obvious solution
to this problem is to make challengers deposit some amount of tokens that
are returned if the challenge is valid. This is only a partial solution, as it
might still be beneficial for the adversary to spam the system (and burn
the deposits) with invalid challenges, for example to prevent the valid

15

challenge from a honest validator from going through. These attacks are
called Grieving Attacks.

See section 3.7.2 for a way to get around the latter point.

2.4 Succinct Non-interactive Arguments of Knowledge

The second solution to multiple-shard corruption is to use some sort of crypto-
graphic constructions that allow one to prove that a certain computation (such
as computing a block from a set of transactions) was carried out correctly.
Such constructions do exist, e.g. zk-SNARKs, zk-STARKs and a few others,
and some are actively used in blockchain protocols today for private payments,
most notably ZCash. The primary problem with such primitives is that they
are notoriously slow to compute. E.g. Coda Protocol, that uses zk-SNARKs
specifically to prove that all the blocks in the blockchain are valid, said in one
of the interviews that it can take 30 seconds per transaction to create a proof
(this number is probably smaller by now).

Interestingly, a proof doesn’t need to be computed by a trusted party, since
the proof not only attests to the validity of the computation it is built for, but to
the validity of the proof itself. Thus, the computation of such proofs can be split
among a set of participants with significantly less redundancy than would be
necessary to perform some trustless computation. It also allows for participants
who compute zk-SNARKs to run on special hardware without reducing the
decentralization of the system.

The challenges of zk-SNARKs, besides performance, are:

1. Dependency on less-researched and less-time-tested cryptographic primi-
tives;

2. ”Toxic waste” — zk-SNARKs depend on a trusted setup in which a group
of people performs some computation and then discards the intermediate
values of that computation. If all the participants of the procedure collude
and keep the intermediate values, fake proofs can be created;

3. Extra complexity introduced into the system design;

4. zk-SNARKs only work for a subset of possible computations, so a protocol
with a Turing-complete smart contract language wouldn’t be able to use
SNARKs to prove the validity of the chain.

2.5 Data Availability

The second problem we will touch upon is data availability. Generally nodes
operating a particular blockchain are separated into two groups: Full Nodes,
those that download every full block and validate every transaction, and Light
Nodes, those that only download block headers, and use Merkle proofs for parts
of the state and transactions they are interested in, as shown on figure 11.

16

https://z.cash/
https://codaprotocol.com/

Figure 11: Merkle Tree

Now if a majority of full nodes collude, they can produce a block, valid or
invalid, and send its hash to the light nodes, but never disclose the full content
of the block. There are various ways they can benefit from it. For example,
consider figure 12:

Figure 12: Data Availability problem

There are three blocks: the previous, A, is produced by honest validators;
the current, B, has validators colluding; and the next, C, will be also produced
by honest validators (the blockchain is depicted in the bottom right corner).

You are a merchant. The validators of the current block (B) received block
A from the previous validators, computed a block in which you receive money,

17

and sent you a header of that block with a Merkle proof of the state in which
you have money (or a Merkle proof of a valid transaction that sends the money
to you). Confident the transaction is finalized, you provide the service.

However, the validators never distribute the full content of the block B to
anyone. As such, the honest validators of block C can’t retrieve the block, and
are either forced to stall the system or to build on top of A, depriving you as a
merchant of money.

When we apply the same scenario to sharding, the definitions of full and
light node generally apply per shard: validators in each shard download every
block in that shard and validate every transaction in that shard, but other
nodes in the system, including those that snapshot shard chains state into the
beacon chain, only download the headers. Thus the validators in the shard are
effectively full nodes for that shard, while other participants in the system,
including the beacon chain, operate as light nodes.

For the fisherman approach we discussed above to work, honest validators
need to be able to download blocks that are cross-linked to the beacon chain.
If malicious validators cross-linked a header of an invalid block (or used it to
initiate a cross-shard transaction), but never distributed the block, the honest
validators have no way to craft a challenge.

We will cover three approaches to address this problem that complement
each other.

2.5.1 Proofs of Custody

The most immediate problem to be solved is whether a block is available once
it is published. One proposed idea is to have so-called Notaries that rotate
between shards more often than validators whose only job is to download a
block and attest to the fact that they were able to download it. They can be
rotated more frequently because they don’t need to download the entire state
of the shard, unlike the validators who cannot be rotated frequently since they
must download the state of the shard each time they rotate, as shown on figure
13.

The problem with this naive approach is that it is impossible to prove later
whether the Notary was or was not able to download the block, so a Notary
can choose to always attest that they were able to download the block without
even attempting to retrieve it. One solution to this is for Notaries to provide
some evidence or to stake some amount of tokens attesting that the block was
downloaded. One such solution is discussed here: https://ethresear.ch/t/

1-bit-aggregation-friendly-custody-bonds/2236.

2.5.2 Erasure Codes

When a particular light node receives a hash of a block, to increase the node’s
confidence that the block is available it can attempt to download a few random
pieces of the block. This is not a complete solution, since unless the light nodes
collectively download the entire block the malicious block producers can choose

18

https://ethresear.ch/t/1-bit-aggregation-friendly-custody-bonds/2236
https://ethresear.ch/t/1-bit-aggregation-friendly-custody-bonds/2236

Figure 13: Validators need to download state and thus cannot be rotated
frequently

to withhold the parts of the block that were not downloaded by any light node,
thus still making the block unavailable.

One solution is to use a construction called Erasure Codes to make it possible
to recover the full block even if only some part of the block is available, as shown
on figure 14.

Figure 14: Merkle tree built on top of erasure coded data

Both Polkadot and Ethereum Serenity have designs around this idea that
provide a way for light nodes to be reasonably confident the blocks are available.
The Ethereum Serenity approach has a detailed description in [2].

19

2.5.3 Polkadot’s approach to data availability

In Polkadot, like in most sharded solutions, each shard (called parachain) snap-
shots its blocks to the beacon chain (called relay chain). Say there are 2f + 1
validators on the relay chain. The block producers of the parachain blocks, called
collators, once the parachain block is produced compute an erasure coded ver-
sion of the block that consists of 2f +1 parts such that any f parts are sufficient
to reconstruct the block. They then distribute one part to each validator on the
relay chain. A particular relay chain validator would only sign on a relay chain
block if they have their part for each parachain block that is snapshotted to
such relay chain block. Thus, if a relay chain block has signatures from 2f + 1
validators, and for as long as no more than f of them violated the protocol, each
parachain block can be reconstructed by fetching the parts from the validators
that follow the protocol. See figure 15.

Figure 15: Polkadot’s data availability

2.5.4 Long term data availability

Note that all the approaches discussed above only attest to the fact that a block
was published at all, and is available now. Blocks can later become unavailable
for a variety of reasons: nodes going offline, nodes intentionally erasing historical
data, and others.

A whitepaper worth mentioning that addresses this issue is Polyshard [3],
which uses erasure codes to make blocks available across shards even if several
shards completely lose their data. Unfortunately their specific approach requires
all the shards to download blocks from all other shards, which is prohibitively
expensive.

The long term availability is not as pressing of an issue: since no participant
in the system is expected to be capable of validating all the chains in all the

20

shards, the security of the sharded protocol needs to be designed in such a
way that the system is secure even if some old blocks in some shards become
completely unavailable.

3 Nightshade

3.1 From shard chains to shard chunks

The sharding model with shard chains and a beacon chain is very powerful but
has certain complexities. In particular, the fork choice rule needs to be executed
in each chain separately, the fork choice rule in the shard chains and the beacon
chain must be built differently and tested separately.

In Nightshade we model the system as a single blockchain, in which each
block logically contains all the transactions for all the shards, and changes the
whole state of all the shards. Physically, however, no participant downloads the
full state or the full logical block. Instead, each participant of the network only
maintains the state that corresponds to the shards that they validate transac-
tions for, and the list of all the transactions in the block is split into physical
chunks, one chunks per shard.

Under ideal conditions each block contains exactly one chunk per shard per
block, which roughly corresponds to the model with shard chains in which the
shard chains produce blocks with the same speed as the beacon chain. However,
due to network delays some chunks might be missing, so in practice each block
contains either one or zero chunks per shard. See section 3.3 for details on how
blocks are produced.

Figure 16: A model with shard chains on the left and with one chain having
blocks split into chunks on the right

21

3.2 Consensus

The two dominant approaches to the consensus in the blockchains today are the
longest (or heaviest) chain, in which the chain that has the most work or stake
used to build it is considered canonical, and BFT, in which for each block some
set of validators reach a BFT consensus.

In the protocols proposed recently the latter is a more dominant approach,
since it provides immediate finality, while in the longest chain more blocks need
to be built on top of the block to ensure the finality. Often for a meaningful
security the time it takes for sufficient number of blocks to be built takes on the
order of hours.

Using BFT consensus on each block also has disadvantages, such as:

1. BFT consensus involves considerable amount of communication. While
recent advances allow the consensus to be reached in linear time in number
of participants (see e.g. [4]), it is still noticeable overhead per block;

2. It is unfeasible for all the network participants to participate in the BFT
consensus per block, thus usually only a randomly sampled subset of par-
ticipants reach the consensus. A randomly sampled set can be, in principle,
adaptively corrupted, and a fork in theory can be created. The system
either needs to be modelled to be ready for such an event, and thus still
have a fork-choice rule besides the BFT consensus, or be designed to shut
down in such an event. It is worth mentioning that some designs, such as
Algorand [5], significantly reduce the probability of adaptive corruption.

3. Most importantly, the system stalls if 1
3 or more of all the participants are

offline. Thus, any temporary network glitch or a network split can com-
pletely stall the system. Ideally the system must be able to continue to
operate for as long as at least half of the participants are online (heaviest
chain-based protocols continue operating even if less than half of the par-
ticipants are online, but the desirability of this property is more debatable
within the community).

A hybrid model in which the consensus used is some sort of the heaviest
chain, but some blocks are periodically finalized using a BFT finality gad-
get maintain the advantages of both models. Such BFT finality gadgets are
Casper FFG [6] used in Ethereum 2.0 8, Casper CBC (see https://vitalik.

ca/general/2018/12/05/cbc_casper.html) and GRANDPA (see https://

medium.com/polkadot-network/d08a24a021b5) used in Polkadot.
Nightshade uses the heaviest chain consensus. Specifically when a block

producer produces a block (see section 3.3), they can collect signatures from
other block producers and validators attesting to the previous block. See section
3.8 for details how such large number of signatures is aggregated. The weight

8Also see the whiteboard session with Justin Drake for an indepth overview of Casper
FFG, and how it is integrated with the GHOST heaviest chain consensus here: https://www.

youtube.com/watch?v=S262StTwkmo

22

https://vitalik.ca/general/2018/12/05/cbc_casper.html
https://vitalik.ca/general/2018/12/05/cbc_casper.html
https://medium.com/polkadot-network/d08a24a021b5
https://medium.com/polkadot-network/d08a24a021b5
https://www.youtube.com/watch?v=S262StTwkmo
https://www.youtube.com/watch?v=S262StTwkmo

of a block is then the cumulative stake of all the signers whose signatures are
included in the block. The weight of a chain is the sum of the block weights.

On top of the heaviest chain consensus we use a finality gadget that uses
the attestations to finalize the blocks. To reduce the complexity of the system,
we use a finality gadget that doesn’t influence the fork choice rule in any way,
and instead only introduces extra slashing conditions, such that once a block is
finalized by the finality gadget, a fork is impossible unless a very large percentage
of the total stake is slashed. Casper CBC is such a finality gadget, and we
presently model with Casper CBC in mind.

We also work on a separate BFT protocol called TxFlow. At the time of
writing this document it is unclear if TxFlow will be used instead of Casper
CBC. We note, however, that the choice of the finality gadget is largely orthog-
onal to the rest of the design.

3.3 Block production

In Nightshade there are two roles: block producers and validators. At any
point the system contains w block producers, w = 100 in our models, and wv
validators, in our model v = 100, wv = 10, 000. The system is Proof-of-Stake,
meaning that both block producers and validators have some number of internal
currency (referred to as ”tokens”) locked for a duration of time far exceeding the
time they spend performing their duties of building and validating the chain.

As with all the Proof of Stake systems, not all the w block producers and not
all the wv validators are different entities, since that cannot be enforced. Each
of the w block producers and the wv validators, however, do have a separate
stake.

The system contains n shards, n = 1000 in our model. As mentioned in
section 3.1, in Nightshade there are no shard chains, instead all the block pro-
ducers and validators are building a single blockchain, that we refer to as the
main chain. The state of the main chain is split into n shards, and each block
producer and validator at any moment only have downloaded locally a subset of
the state that corresponds to some subset of the shards, and only process and
validate transactions that affect those parts of the state.

To become a block producer, a participant of the network locks some large
amount of tokens (a stake). The maintenance of the network is done in epochs,
where an epoch is a period of time on the order of days. The participants
with the w largest stakes at the beginning of a particular epoch are the block
producers for that epoch. Each block producer is assigned to sw shards, (say
sw = 40, which would make sww/n = 4 block producers per shard). The block
producer downloads the state of the shard they are assigned to before the epoch
starts, and throughout the epoch collects transactions that affect that shard,
and applies them to the state.

For each block b on the main chain, and for every shards s, there’s one of the
assigned block producers to s who is responsible to produce the part of b related
to the shard. The part of b related to shard s is called a chunk, and contains the
list of the transactions for the shard to be included in b, as well as the merkle

23

root of the resulting state. b will ultimately only contain a very small header of
the chunk, namely the merkle root of all the applied transactions (see section
3.7.1 for exact details), and the merkle root of the final state.

Throughout the rest of the document we often refer to the block producer
that is responsible to produce a chunk at a particular time for a particular shard
as a chunk producer. Chunk producer is always one of the block producers.

The block producers and the chunk producers rotate each block according
to a fixed schedule. The block producers have an order and repeatedly produce
blocks in that order. E.g. if there are 100 block producers, the first block
producers is responsible for producing blocks 1, 101, 201 etc, the second is
responsible for producing 2, 102, 202 etc).

Since chunk production, unlike the block production, requires maintaining
the state, and for each shard only sww/n block producers maintain the state
per shard, correspondingly only those sww/n block producers rotate to create
chunks. E.g. with the constants above with four block producers assigned to
each shard, each block producer will be creating chunks once every four blocks.

3.4 Ensuring data availability

To ensure the data availability we use an approach similar to that of Polkadot
described in section 2.5.3. Once a block producer produces a chunk, they create
an erasure coded version of it with an optimal (w, bw/6 + 1c) block code of the
chunk.

They then send one piece of the erasure coded chunk (we call such pieces
chunk parts, or just parts) to each block producer.

We compute a merkle tree that contains all the parts as the leaves, and the
header of each chunk contains the merkle root of such tree.

The parts are sent to the validators via onepart messages. Each such message
contains the chunk header, the ordinal of the part and the part contents. The
message also contains the signature of the block producer who produced the
chunk and the merkle path to prove that the part corresponds to the header
and is produced by the proper block producer.

Once a block producer receives a main chain block, they first check if they
have onepart messages for each chunk included in the block. If not, the block
is not processed until the missing onepart messages are retrieved.

Once all the onepart messages are received, the block producer fetches the
remaining parts from the peers and reconstructs the chunks for which they hold
the state.

The block producer doesn’t process a main chain block if for at least one
chunk included in the block they don’t have the corresponding onepart mes-
sage, or if for at least one shard for which they maintain the state they cannot
reconstruct the entire chunk.

For a particular chunk to be available it is enough that bw/6c+1 of the block
producers have their parts and serve them. Thus, for as long as the number of
malicious actors doesn’t exceed bw/3c no chain that has more than half block
producers building it can have unavailable chunks.

24

Figure 17: Each block contains one or zero chunks per shard, and each chunk
is erasure coded. Each part of the erasure coded chunk is sent to a designated
block producer via a special onepart message

3.4.1 Dealing with lazy block producers

If a block producer has a block for which a onepart message is missing, they
might choose to still sign on it, because if the block ends up being on chain it
will maximize the reward for the block producer. There’s no risk for the block
producer since it is impossible to prove later that the block producer didn’t have
the onepart message.

To address it we make each chunk producer when creating the chunk to
choose a color (red or blue) for each part of the future encoded chunk, and store
the bitmask of assigned color in the chunk before it is encoded. Each onepart
message then contains the color assigned to the part, and the color is used when
computing the merkle root of the encoded parts. If the chunk producer deviates
from the protocol, it can be easily proven, since either the merkle root will not
correspond to onepart messages, or the colors in the onepart messages that
correspond to the merkle root will not match the mask in the chunk.

When a block producer signs on a block, they include a bitmask of all the
red parts they received for the chunks included in the block. Publishing an
incorrect bitmask is a slashable behavior. If a block producer hasn’t received a
onepart message, they have no way of knowing the color of the message, and
thus have a 50% chance of being slashed if they attempt to blidnly sign the
block.

3.5 State transition application

The chunk producers only choose which transactions to include in the chunk but
do not apply the state transition when they produce a chunk. Correspondingly,

25

the chunk header contains the merkle root of the merkelized state as of before
the transactions in the chunk are applied.

The transactions are only applied when a full block that includes the chunk
is processed. A participant only processes a block if

1. The previous block was received and processed;

2. For each chunk the participant doesn’t maintain the state for they have
seen the onepart message;

3. For each chunk the participant does maintain the state for they have the
full chunk.

Once the block is being processed, for each shard for which the participant
maintains the state for, they apply the transactions and compute the new state
as of after the transactions are applied, after which they are ready to produce
the chunks for the next block, if they are assigned to any shard, since they have
the merkle root of the new merkelized state.

3.6 Cross-shard transactions and receipts

If a transaction needs to affect more than one shard, it needs to be consecutively
executed in each shard separately. The full transaction is sent to the first shard
affected, and once the transaction is included in the chunk for such shard, and
is applied after the chunk is included in a block, it generates a so called receipt
transaction, that is routed to the next shard in which the transaction need to
be executed. If more steps are required, the execution of the receipt transaction
generates a new receipt transaction and so on.

3.6.1 Receipt transaction lifetime

It is desirable that the receipt transaction is applied in the block that immedi-
ately follows the block in which it was generated. The receipt transaction is only
generated after the previous block was received and applied by block producers
that maintain the originating shard, and needs to be known by the time the
chunk for the next block is produced by the block producers of the destination
shard. Thus, the receipt must be communicated from the source shard to the
destination shard in the short time frame between those two events.

Let A be the last produced block which contains a transaction t that gener-
ates a receipt r. Let B be the next produced block (i.e. a block that has A as
its previous block) that we want to contain r. Let t be in the shard a and r be
in the shard b.

The lifetime of the receipt, also depicted on figure 18, is the following:
Producing and storing the receipts. The chunk producer cpa for shard

a receives the block A, applies the transaction t and generates the receipt r. cpa
then stores all such produced receipts in its internal persistent storage indexed
by the source shard id.

26

Distributing the receipts. Once cpa is ready to produce the chunk for
shard a for block B, they fetch all the receipts generated by applying the trans-
actions from block A for shard a, and included them into the chunk for shrad
a in block B. Once such chunk is generated, cpa produces its erasure coded
version and all the corresponding onepart messages. cpa knows what block pro-
ducers maintain the full state for which shards. For a particular block producer
bp cpa includes the receipts that resulted from applying transactions in block A
for shard a that have any of the shards that bp cares about as their destination
in the onepart message when they distributed the chunk for shard a in block B
(see figure 17, that shows receipts included in the onepart message).

Receiving the receipts. Remember that the participants (both block pro-
ducers and validators) do not process blocks until they have onepart messages
for each chunk included in the block. Thus, by the time any particular particpi-
ant applies the block B, they have all the onepart messages that correspond to
chunks in B, and thus they have all the incoming receipts that have the shards
the participant maintains state for as their destination. When applying the
state transition for a particular shard, the participant apply both the receipts
that they have collected for the shard in the onepart messages, as well as all
the transactions included in the chunk itself.

Figure 18: The lifetime of a receipt transaction

3.6.2 Handling too many receipts

It is possible that the number of receipts that target a particular shard in a
particular block is too large to be processed. For example, consider figure 19, in
which each transaction in each shard generates a receipt that targets shard 1.
By the next block the number of receipts that shard 1 needs to process is
comparable to the load that all the shards combined processed while handling
the previous block.

27

Figure 19: If all the receipts target the same shard, the shard might not have
the capacity to process them

To address it we use a technique similar to that used in QuarkChain 9.
Specifically, for each shard the last block B and the last shard s within that
block from which the receipts were applied is recorded. When the new shard is
created, the receipt are applied in order first from the remaining shards in B,
and then in blocks that follow B, until the new chunk is full. Under normal
circumstances with a balanced load it will generally result in all the receipts
being applied (and thus the last shard of the last block will be recorded for
each chunk), but during times when the load is not balanced, and a particular
shard receives disproportionately many receipts, this technique allows them to
be processed while respecting the limits on the number of transactions included.

Note that if such unbalanced load remains for a long time, the delay from
the receipt creation until application can continue growing indefinitely. One
way to address it is to drop any transaction that creates a receipt targeting a
shard that has a processing delay that exceeds some constant (e.g. one epoch).

Consider figure 20. By block B the shard 4 cannot process all the receipts,
so it only processes receipts origination from up to shard 3 in block A, and
records it. In block C the receipts up to shard 5 in block B are included, and
then by block D the shard catches up, processing all the remaining receipts in
block B and all the receipts from block C.

3.7 Chunks validation

A chunk produced for a particular shard (or a shard block produced for a par-
ticular shard chain in the model with shard chains) can only be validated by the

9See the whiteboard episode with QuarkChain here: https://www.youtube.com/watch?

v=opEtG6NM4x4, in which the approach to cross-shard transactions is discussed, among other
things

28

https://www.youtube.com/watch?v=opEtG6NM4x4
https://www.youtube.com/watch?v=opEtG6NM4x4

Figure 20: Delayed receipts processing

participants that maintain the state. They can be block producers, validators,
or just external witnesses that downloaded the state and validate the shard in
which they store assets.

In this document we assume that majority of the participants cannot store
the state for a large fraction of the shards. It is worth mentioning, however,
that there are sharded blockchains that are designed with the assumption that
most participants do have capacity to store the state for and validate most of
the shards, such as QuarkChain.

Since only a fraction of the participants have the state to validate the shard
chunks, it is possible to adaptive corrupt just the participants that have the
state, and apply an invalid state transition.

Multiple sharding designs were proposed that sample validators every few
days, and within a day any block in the shard chain that has more than 2/3
of signatures of the validators assigned to such shard is immediately considered
final. With such approach an adaptive adversary only needs to corrupt 2n/3+1
of the validators in a shard chain to apply an invalid state transition, which,
while is likely hard to pull off, is not a level of security sufficient for a public
blockchain.

As discussed in section 2.3, the common approach is to allow a certain win-
dow of time after a block is created for any participant that has state (whether
it’s a block producer, a validator, or an external observer) to challenge its va-
lidity. Such participants are called Fishermen. For a fisherman to be able to
challenge an invalid block, it must be ensured that such a block is available to
them. The data availability in Nightshade is discussed in section 3.4.

In Nightshade once a block is produced, the chunks were not validated by
anyone but the actual chunk producer. In particular, the block producer that
suggested the block naturally didn’t have the state for most of the shards, and

29

was not able to validate the chunks. When the next block is produced, it con-
tains attestations (see section 3.2) of multiple block producers and validators,
but since the majority of block producers and validators do not maintain state
for most shards as well, a block with just one invalid chunk will collect signifi-
cantly more than half of the attestations and will continue being on the heaviest
chain.

To address this issue, we allow any participant that maintains the state of
a shard to submit a challenge on-chain for any invalid chunk produced in that
shard.

3.7.1 State validity challenge

Once a participant detects that a particular chunk is invalid, they need to pro-
vide a proof that the chunk is invalid. Since the majority of the network par-
ticipants do not maintain the state for the shard in which the invalid chunk is
produced, the proof needs to have sufficient information to confirm the block is
invalid without having the state.

We set a limit Ls of the amount of state (in bytes) that a single transaction
can cumulatively read or write. Any transaction that touches more than Ls

state is considered to be invalid. Remember from the section 3.5 that the chunk
in a particular block B only contains the transactions to be applied, but not
the new state root. The state root included in the chunk in block B is the state
root before applying such transactions, but after applying the transactions from
the last chunk in the same shard before the block B. A malicious actor that
wishes to apply an invalid state transition would include an incorrect state root
in block B that doesn’t correspond to the state root that results from applying
the transactions in the preceding chunk.

We extend the information that a chunk producer includes in the chunk.
Instead of just including the state after applying all the transactions, it instead
includes a state root after applying each contiguous set of transactions that
collectively read and write Ls bytes of state. With this information for the
fisherman to create a challenge that a state transition is applied incorrectly it
is sufficient to find the first such invalid state root, and include just Ls bytes of
state that are affected by the transactions between the last state root (which was
valid) and the current state root with the merkle proofs. Then any participant
can validate the transactions in the segment and confirm that the chunk is
invalid.

Similarly, if the chunk producer attempted to include transactions that read
and write more than Ls bytes of state, for the challenge it is enough to include
the first Ls bytes it touches with the merkle proofs, which will be enough to
apply the transactions and confirm that there’s a moment when an attempt to
read or write content beyond Ls bytes is made.

30

3.7.2 Fishermen and fast cross-shard transactions

As discussed in section 2.3, once we assume that the shard chunks (or shard
blocks in the model with shard chains) can be invalid and introduce a challenge
period, it negatively affects the finality, and thus cross-shard communication. In
particular, the destination shard of any cross-shard transction cannot be certain
the originating shard chunk or block is final until the challenge period is over
(see figure 21).

Figure 21: Waiting for the challenge period before applying a receipt

The way to address it in a way that makes the cross-shard transactions
instantenious is for the destination shard to not wait for the challenge period
after the source shard transaction is published, and apply the receipt transaction
immediately, but then roll back the destination shard together with the source
shard if later the originating chunk or block was found to be invalid (see figure
22). This applies very naturally to the Nightshade design in which the shard
chains are not independent, but instead the shard chunks are all published
together in the same main chain block. If any chunk is found to be invalid, the
entire block with that chunk is considered invalid, and all the blocks built on
top of it. See figure 23.

Both of the above approaches provide atomicity assuming that the challenge
period is sufficiently long. We use the latter approach since providing fast cross-
shard transactions under normal circumstances outweights the inconvenience of
the destination shard rolling back due to an invalid state transition in one of
the source shards, which is an extremely rare event.

3.7.3 Hiding validators

The existence of the challenges already significantly reduces the probability of
adaptive corruption, since to finalize a chunk with an invalid state transition post

31

Figure 22: Applying receipts immediately and rolling back the destination
chain if the source chain had an invalid block

Figure 23: Fisherman challenge in Nightshade

the challenge period the adaptive adversary needs to corrupt all the participants
that maintain the state of the shard, including all the validators.

Estimating the likelihood of such an event is extremely complex, since no
sharded blockchain has been live sufficiently long for any such attack to be at-
tempted. We argue that the probability, while extremely low, is still sufficiently
large for a system that is expected to execute multi-million transactions and
run a world-wide financial operations.

There are two main reasons for this belief:

1. Most of the validators of the Proof-of-Stake chains and miners of the

32

Proof-of-Work chains are primarily incentivized by the financial upside. If
an adaptive adversary offers them more money then the expected return
from operating honestly, it is reasonable to expect that many validators
will accept the offer.

2. Many entities do validation of Proof-of-Stake chains professionally, and
it is expected that a large percentage of the stake in any chain will be
from such entities. The number of such entities is sufficiently small for an
adaptive adversary to get to know most of them personally and have a
good understanding of their inclanation to be corrupted.

We take one step further in reducing the probability of the adaptive cor-
ruption by hiding which validators are assigned to which shard. The idea is
remotely similar to the way Algorand [5] conceals validators.

It is critical to note that even if the validators are concealed, as in Algorand
or as described below, the adaptive corruption is still in theory possible. While
the adaptive adversary doesn’t know the participants that will create or validate
a block or a chunk, the participants themselves do know that they will perform
such a task and have a cryptographic proof of it. Thus, the adversary can
broadcast their intent to corrupt, and pay to any participant that will provide
such a cryptographic proof. We note however, that since the adversary doesn’t
know the validators that are assigned to the shard they want to corrupt, they
have no other choice but to broadcast their intent to corrupt a particular shard to
the entire community. At that point it is economically beneficial for any honest
participant to spin up a full node that validates that shard, since there’s a high
chance of an invalid block appearing in that shard, which is an opportunity to
create a challenge and collect associated reward.

To not reveal the validators that are assigned to a particular shard, we do
the following (see figure 24):

Using VRF to get the assignment. At the beginning of each epoch each
validator uses a VRF to get a bitmask of the shards the validator is assigned to.
The bitmask of each validator will have Sw bits (see section 3.3 for the definition
of Sw). The validator then fetches the state of the corresponding shards, and
during the epoch for each block received validates the chunks that correspond
to the shards that the validator is assigned to.

Sign on blocks instead of chunks. Since the shards assignment is con-
cealed, the validator cannot sign on chunks. Instead it always signs on the entire
block, thus not revealing what shards it validates. Specifically, when the val-
idator receives a block and validates all the chunks, it either creates a message
that attests that all the chunks in all the shards the validator is assigned to are
valid (without indicating in any way what those shards are), or a message that
contains a proof of an invalid state transition if any chunk is invalid. See the
section 3.8 for the details on how such messages are aggregated, section 3.7.4 for
the details on how to prevent validators from piggy-backing on messages from
other validators, and section 3.7.5 for the details how to reward and punish
validators should a successful invalid state transition challenge actually happen.

33

Figure 24: Concealing the validators in Nightshade

3.7.4 Commit-Reveal

One of the common problems with validators is that a validator can skip down-
loading the state and actually validating the chunks and blocks, and instead
observe the network, see what the other validators submit and repeat their
messages. A validator that follows such a strategy doesn’t provide any extra
security for the network, but collects rewards.

A common solution for this problem is for each validator to provide a proof
that they actually validated the block, for example by providing a unique trace
of applying the state transition, but such proofs significantly increase the cost
of validation.

Figure 25: Commit-reveal

34

Instead we make the validators first commit to the validation result (either
the message that attests to the validity of the chunks, or the proof of an invalid
state transition), wait for a certain period, and only then reveal the actual vali-
dation result, as shown on figure 25. The commit period doesn’t intersect with
the reveal period, and thus a lazy validator cannot copycat honest validators.
Moreover, if a dishonest validator committed to a message that attests to the
validity of the assigned chunks, and at least one chunk was invalid, once it is
shown that the chunk is invalid the validator cannot avoid the slashing, since,
as we show in section 3.7.5, the only way to not get slashed in such a situation
is to present a message that contains a proof of the invalid state transition that
matches the commit.

3.7.5 Handling challenges

As discussed above, once a validator receives a block with an invalid chunk,
they first prepare a proof of the invalid state transition (see section 3.7.1), then
commit to such a proof (see 3.7.4), and after some period reveal the challenge.
Once the revealed challenge is included in a block, the following happens:

1. All the state transitions that happened from the block containing the
invalid chunk until the block in which the revealed challenge is included get
nullyfied. The state before the block that includes the revealed challenge
is considered to be the same as the state before the block that contained
the invalid chunk.

2. Within a certain period of time each validator must reveal their bitmask
of the shards they validate. Since the bitmask is created via a VRF, if
they were assigned to the shard that had the invalid state transition, they
cannot avoid revealing it. Any validator that fails to reveal the bitmask
is assumed to be assigned to the shard.

3. Each validator that after such period is found to be assigned to the shard,
that did commit to some validation result for the block containing the
invalid chunk and that didn’t reveal the proof of invalid state transition
that corresponds to their commit is slashed.

4. Each validator gets a new shards assignment, and a new epoch is scheduled
to start after some time sufficient for all the validators to download the
state, as shown on figure 26.

Note that from the moment the validators reveal the shards they are assigned
to until the new epoch starts the security of the system is reduced since the
shards assignment is revealed. The participants of the network need to keep it
in mind while using the network during such period.

3.8 Signature Aggregation

For a system with hudreds of shards to operate securely, we want to have on the
order of 10, 000 or more validators. As discussed in section 3.7, we want each

35

Figure 26: Handling the challenge

validator to publish a commit to a certain message and a signature on average
once per block. Even if the commit messages were the same, aggregating such a
BLS-signature and validating it would have been prohibitively expensive. But
naturally the commit and reveal messages are not the same across validators,
and thus we need some way to aggregate such messages and the signatures in a
way that allows for fast validation later.

The specific approach we use is the following:
Validators joining block producers. The block producers are known

some time before the epoch starts, since they need some time to download the
state before the epoch starts, and unlike the validators the block producers are
not concealed. Each block producer has v validator slots. Validators submit
off-chain proposals to the block producers to get included as one of their v
validators. If a block producer wishes to include a validator, they submit a
transaction that contains the initial off-chainrequest from the validator, and the
block producer’s signature that makes the validator join the block producer.
Note that the validators assigned to the block producers do not necessarily
validate the same shards that the block producer produces chunks for. If a
validator applied to join multiple block producers, only the transaction from
the first block producer will succeed.

Block producers collect commits. The block producer constantly col-
lects the commit and reveal messages from the validators. Once a certain num-
ber of such messages are accumulated, the block producer computes a merkle
tree of these messages, and sends to each validator the merkle root and the
merkle path to their message. The validator validates the path and signs on
the merkle root. The block producer then accumulates a BLS signature on the
merkle root from the validators, and publishes only the merkle root and the
accumulated signature. The block producer also signs on the validity of the
multisignature using a cheap ECDSA signature. If the multisignature doesn’t
match the merkle root submitted or the bitmask of the validators participat-
ing, it is a slashable behavior. When synchronizing the chain, a participant
can choose to validate all the BLS signatures from the validators (which is ex-
tremely expensive since it involves aggregating validators public keys), or only

36

the ECDMA signatures from the block producers and rely on the fact that the
block producer was not challenged and slashed.

Using on-chain transactions and merkle proofs for challenges. It
can be noted that there’s no value in revealing messages from validators if no
invalid state transition was detected. Only the messages that contain the actual
proofs of invalid state transition need to be revealed, and only for such messages
it needs to be shown that they match the prior commit. The message needs to
be revealed for two purposes:

1. To actually initiate the rollback of the chain to the moment before the
invalid state transition (see section 3.7.5).

2. To prove that the validator didn’t attempt to attest to the validity of the
invalid chunk.

In either case we need to address two issues:

1. The actual commit was not included on chain, only the merkle root of the
commit aggregated with other messages. The validator needs to use the
merkle path provided by the block producer and their original commit to
prove that they committed to the challenge.

2. It is possible that all the validators assigned to the shard with the invalid
state transition happen to be assigned to corrupted block producers that
are censoring them. To get around it we allow them to submit their reveals
as a regular transaction on-chain and bypass the aggregation.

The latter is only allowed for the proofs of invalid state transition, which are
extremely rare, and thus should not result in spamming the blocks.

The final issue that needs to be addressed is that the block producers can
choose not to participate in messages aggregation or intentionally censor partic-
ular validators. We make it economically disadvantageous, by making the block
producer reward proportional to the number of validators assigned to them. We
also note that since the block producers between epochs largely intersect (since
it’s always the top w participants with the highest stake), the validators can
largely stick to working with the same block producers, and thus reduce the risk
of getting assigned to a block producer that censored them in the past.

3.9 Snapshots Chain

Since the blocks on the main chain are produced very frequently, downloading
the full history might become expensive very quickly. Moreover, since every
block contains a BLS signature of a large number of participants, just the ag-
gregation of the public keys to check the signature might become prohibitively
expensive as well.

Finally, since in any foreseeable future Ethereum 1.0 will likely remain one
of the most used blockchains, having a meaningful way to transfer assets from

37

Near to Ethereum is a requirement, and today verifying BLS signatures to ensure
Near blocks validity on Ethereum’s side is not possible.

Each block in the Nightshade main chain can optionally contain a Schnorr
multisignature on the header of the last block that included such a Schnorr
multisignature. We call such blocks snapshot blocks. The very first block of
every epoch must be a snapshot block. While working on such a multisignature,
the block producers must also accumulate the BLS signatures of the validators
on the last snapshot block, and aggregate them the same way as described in
section 3.8.

Since the block producers set is constant throughout the epoch, validating
only the first snapshot blocks in each epoch is sufficient assuming that at no
point a large percentage of block producers and validators colluded and created
a fork.

The first block of the epoch must contain information sufficient to compute
the block producers and validators for the epoch.

We call the subchain of the main chain that only contains the snapshot
blocks a snapshot chain.

Creating a Schnorr multisignature is an interactive process, but since we
only need to perform it infrequently, any, no matter how inefficient, process
will suffice. The Schnorr multisignatures can be easily validated on Ethereum,
thus providing crucial primitives for a secure way of performing cross-blockchain
communication.

To sync with the Near chain one only needs to download all the snapshot
blocks and confirm that the Schnorr signatures are correct (optionally also ver-
ifying the individual BLS signatures of the validators), and then only syncing
main chain blocks from the last snapshot block.

4 Conclusion

In this document we discussed approaches to building sharded blockchains and
covered two major challenges with existing approaches, namely state validity
and data availability. We then presented Nightshade, a sharding design that
powers NEAR Protocol.

The design is work in progress, if you have comments, questions or feedback
on this document, please go to https://near.chat.

References

[1] Monica Quaintance Will Martino and Stuart Popejoy. Chainweb: A proof-
of-work parallel-chain architecture for massive throughput. 2018.

[2] Mustafa Al-Bassam, Alberto Sonnino, and Vitalik Buterin. Fraud proofs:
Maximising light client security and scaling blockchains with dishonest ma-
jorities. CoRR, abs/1809.09044, 2018.

38

https://near.chat

[3] Songze Li, Mingchao Yu, Salman Avestimehr, Sreeram Kannan, and Pramod
Viswanath. Polyshard: Coded sharding achieves linearly scaling efficiency
and security simultaneously. CoRR, abs/1809.10361, 2018.

[4] Ittai Abraham, Guy Gueta, and Dahlia Malkhi. Hot-stuff the linear, optimal-
resilience, one-message BFT devil. CoRR, abs/1803.05069, 2018.

[5] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai
Zeldovich. Algorand: Scaling byzantine agreements for cryptocurrencies. In
Proceedings of the 26th Symposium on Operating Systems Principles, SOSP
’17, pages 51–68, New York, NY, USA, 2017. ACM.

[6] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget.
CoRR, abs/1710.09437, 2017.

39

